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The problem of assigning one of several treatments
in clinical trials is formulated as a discounted bandit
problem that was studied by Gittins and Jones. The
problem involves comparison of certain state dependent
indices A recent characterization of the index is used
to calculate more efficiently the values of these
indices.

1 Introduction.

We consider the well known problem of optimal allocation of treatments

in clinical trials A simple version of the problem is as follows There are

several possible treatments for a given disease. When a particular treatment n

is used it is either effective with unknown probability θ or not effective with

probability 1 - θ The problem is to find a sequential sampling procedure

which maximizes a measure of the expected total number of treatment successes.

When the planning horizon is infinite, prior distributions are assigned to the

unknown parameters, and one takes the expected total discounted number of

successes as the relevant measure of performance of a sequential sampling

procedure, the problem can be put into the form of a discounted version of the
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bandit problem treated successfully by Gittins and Jones (1974), see also

Whittle (1980), (1982, p.210). The original formulation of the multiarmed

bandit problem and the sequential clinical trials problem is due to Robbins

(1952), Gittins and Jones showed that there is an index associated with each

state of each bandit such that an optimal procedure always uses the bandit with

the largest current index value. Recently, Katehakis and Veinott (1985) have

obtained a new characterization of the index which allows the index to be more

easily calculated. The purpose of this paper is to illustrate the calculation

of the index in the context of the clinical trials problem using this new

characterization.

2. Computing dynamic allocation indices .

Suppose N treatments are available for treating patients with a

certain disease. Let Y
n
(k) = 1 (

γ

n
(

k
)

 =
 °) denote the outcome that the n-th

treatment has been successful (unsuccessful) the k-th time it is used. At times

t-l,2,.. , based on past observations, one has to decide which treatment to

allocate to the next patient. At the start of the experiment we assume that θ

is a random variable with beta prior density with parameter vector (a
n
, b

n
) ;

i.e., θ has the prior density

_ a -1 b -1

(1) g
n
(θ) = Γ(a

n
 + ^

n
){Γ(a

n
)Γ(b

n
)}

 X
θ
 n
 (1 - θ)

 n
 , for every θ € [0,1],

where in (1) an, bn are strictly positive constants. Furthermore, we assume

that θ ,...,θ are independent. If after k trials using treatment n we let

x
n
(k) = (s

n
(k), f

n
(k)), where s

n
(k) (f

n
(k)) denotes the number of successes (the

number of failures) then, the posterior density of θ given x
n
(k) is also beta

with parameter vector (a
n
 + s

R
(k), b

n
 + f

n
(k)). Thus, the information obtained

during the first k trials from treatment n is summarized by
 x

n
( k ) .

Furthermore,{x (k), k > 1} is a Markov chain on
n

S = {(s,f), s,f = 0,1,2,...} with transition probabilities given by
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(2) P(x
n
(k+1) = (s+l,f) I x

n
(k) = (s,f))

1 - P(x (k+1) = (s,f+l) I x (k) = (s,f))
n n

a + s

P(Y (k+i) = l I x (k) = (s,f)) = — — x
+ b + + f

n n

The problem is to determine a policy π which maximizes the expected

discounted number of successes; i.e., to maximize w(π,α)

(3) w(π,α)

where Y ,
 x
 is Y (k) if at time t treatment ττ(t) = n is used for the k-th time

π(t) n

and α ξ (0,1) is a discount factor. An interpretation of the discount factor α

is that 1-α is the probability that at any given time the entire experiment will

be terminated. Stated otherwise, there are N Markov chains; the problem is to

sequentially activate one of them, leaving the others inactive, in order to

maximize the expected total discounted reward. In this case the expected reward

at any time is the expected posterior probability of success associated with the

state of the activated Markov chain; i.e., if the n-th chain is activated for

the k-th time when x
n
(k) = (s,f), then the corresponding reward is

(4) r (β,f) = E(Y
n
(k+l) I x

n
(k)r (β,f) E(Y

n
(kl) I x

n
(k) (β,f))

 a
 l\
n n

Within the context of this formulation, Gittins and Jones (1974) showed that

this problem can be reduced to N one dimensional problems. Each of the latter

problems involves a single Markov chain and its solution is the calculation of a

dynamic allocation index m
n
(s,f) associated with the current state (s,f) of the

Markov chain. Then, at each point of time an optimal policy for the original

problem is such that it activates the chain with the largest current index

value. Based on an earlier characterization of (1-α) m (s,f), Gittins and

n
Jones (1979) used an algorithm for computing optimal policies. Recently,
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Katehakis and Veinott (1985) have obtained a different characterization of the

index. This characterization casts the calculation of the index into the form

of a familiar replacement problem, e.g., see Derman (1970, ρ 121) Namely, if C

is the class of policies R for controlling {x (k), k > 1} by either allowing it

to continue or to instantaneously restart it at its initial state x
n
(l) = (s,f),

then

(5) m (s,f) = sup {E (Σ~ r (x (k)) | x (1) - (s,f))}.
n _ K. K.— i n n n

R

We next show that (5) can be used to evaluate rn^Sjf) with sufficient

accuracy. In the sequel we will be concerned with a single treatment; for

notational simplicity we will drop the subscript n. Since computing m(s,f) is

essentially the same as computing m(0,0) - it only involves changing the prior

vector from (a,b) to (a + s, b + f) - it suffices, without loss of generality,

to discuss only the computation of m(0,0) It is well known that solving (5)

for the fixed initial state (0,0) involves solving the dynamic programming

equations

(6) V(s,f) - max { ^ + αt^VU.O) + - ^

tb t s + f "Ϊ TTTTT7 a
 +
 b t s

f

 +
 f

 V(s f+1)]}
'

for every ( s , f ) € S

The fact that equation (6) is for computing m(0,0) is reflected in the

appearance of the terms V(l,0) and V(0,l) in the'right side of it. Given the

solution {V(s,f), for every (s,f) € S} of (6) then m(0,0) - V(0,0).

Equation (6) is of the form V(s,f) = T g f V o r equivalently

(7) TV,
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where in (7) V is the vector of values {V(s,f)} and T is a contraction operator

on a complete metric space. Thus, it has a unique bounded solution.

In computing the solution of (7) we consider the finite subset

S = { ( s , f ) € S : s + f < L } and the two systems of equations
Li

(8a) uL(s,f) = TgfuL, if s + f < L,

<8b> u L ( s ' f ) = a + b t s + f T ^ h ? if β
 +
 f - L

(9a) U
L
(s,f) = T

g f
U

L
, if β + f < L,

(9b) U
L
(s,f) = γ 4 ^ » if s + f - L.

(8c)

(9c)

We will use the following more compact notation for (8) and (9)

The transformations T,T,,T2 are monotone contractions (see Bertsekas

(1976)), thus, successive approximations will converge to their unique fixed

points for any initial points V * ° \ \°\
 u

i°^
 τ h a t i s

 >

(10) lim V
( n )

 = lim VJ
(n
'

l)
 = V,

(11) lim u
t

( n )
 = lim T . u }

0
"

0
 = u, ,

L 1 L L
n*

00
 n*

00

(12) lim U
τ

( n )
 = lim T,U

T

(n
"

1}
 = U

τ
 .

n +
»
 L

 n
-x»

 2 L L

Moreover, if the points V >
 u
τ > U are chosen propitiously, the
L L

convergence in (10), is from below or above as desired and from below (above) in
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(11) ((12)).

An algorithm to compute V(0,0) based on (10) involves an infinite

number of variables; however, Propositions 1 and 2, below, allow us to use (11)

and (12) which involve only a finite number of variables. We first state

PROPOSITION 1. For equations (7), (8) and (9) we have

( 1 3 ) a t b l s f f ( 1 " oc) X < V ( s , f ) < ( 1 - α ) l f o r a l l ( s , f ) € S ,

and

(14) u^s.f) < V(s,f) < UL(s,f), for all (s,f) such that s + f < L.

The proof of Proposition 1 is easy and its details will be omitted. Indeed, the

first inequality in (13) follows from the fact that the left hand side is the

expected discounted reward achieved by the suboptimal policy that never restarts

the process in state (0,0) when the initial state is state (s,f); the second

inequality in (13) follows from the fact that the left hand side is the expected

discounted reward attained when all one period rewards are replaced by 1 which

is an upper bound for them. Inequalities (14) then, follow from (13), equations

(10), (11) and (12) and the monotonicity of transformations T, T ^ T 2.

PROPOSITION 2. For any ε > 0 there exist an L = L(ε) such that

(15) U_(0,0) - u
τ
(0,0) < ε, for all L > L

n
.

L L U

Proof. Because of (14) it suffices to show that for any positive constants ε

and ε
2
 there exist L = L(ε ) and L =

 L
(

ε
o)

 s u c h t h a t

(16) U
τ
(0,0) - V(0,0) < ε. , for all L > L, ,
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and

(17) V(0,0) - u
L
(0,0) < ε

2
, for all L > L

2
 .

We only prove (16) since the proof of (17) is analogous. If we take

(0)
 m γ

(0)
 m
 (^α)"

1

 i n ( 1 0
)
 a n d ( 1 2

)
 t
hen, for any L and all n < L

Li

we obtain that

(18) U
τ

(n)
(0,0) = V

( n )
(0,0),

and the convergence in (10), (12) is from above; thus, using (10) and the fact

that V(s,f) > O w e have

(19) V
( n )

(0,0) - V(0,0) < α sup { V ^ ' ^ ^ f ) - V(s,f)} < ...

(s,f)

< α
n
sup (V

( 0 )
(s,f) - V(s,f)} < α

n
(l-α)"

1
.

(s,f)

It follows from (18), (19) that for any L and for all n < L

(20) U
τ

(n)
(0,0) - V(0,0) < α

n
(l-α)

 l
.

Ju

Similar arguments using (12) imply that for all n > 1

(21) U
τ

(n)
(0,0) - U_(0,0) < (

Thus, using (20) and (21) it is now easy to complete the proof of (16).

REMARK. It was assumed that each clinical trial resulted either in a success or

in a failure. The methodology described here extends straightforwardly to the

case where the outcome of a trial can be classified into c, c > 2,

classifications. Then the parameter θ^, is a vector (
θ

n
»

 > θ

n
^ where θ^ is the
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probability of the trial resulting in the i-th classification. The beta prior

is replaced by a Dirichlet prior and the state space becomes

S = {(s,,...,s ), s, = 0,1,...}, where s. denotes the number of trials resulting

1 C 1 i

in classification i (1 < i < c). The reward is a given function of the

classification; see, also, Glazebrook (1978).

3. Computations.

For a given (a,b) in order to compute m(0,0) = V(0,0) we use

transformations T^ and T
2
 starting from

(0), ,. a + s 1 ,
 ττ

(0)
( s f ) =

 Γ ^
 and U

L <
(0), ,. a + s 1 ,

 ττ
U
L
 ( s

'
f ) =

 a + b + s
 +
f Γ ^ '

 a n d U

We choose L sufficiently large according to Proposition 1 and iterate until the

difference: U
τ

(n)
(0,0) - u

τ

(n)
(0,0) is less than 10""

4
. We, then, take as our

approximation to V(0,0) the midpoint of the final interval.

Since there is always an error in computing the indices, the

possibility of not using an optimal policy always exists. In our context, here,

this can be overcome by doing enough computations to guarantee that in computing

the indices the bounding intervals do not overlap. However in general,

Katehakis and Veinott (1985) have shown that if the computed indices are close

to the exact indices then the expected discounted return of the policy based on

the computed indices will be close to the optimal expected discounted return.

In the following tables the results of some calculations are

tabulated. There is a separate table for each value of α = .5, .75, .9. An

entry in cell (a+s, b+f) is the index for a treatment having prior (a,b) and in

state (s,f).

Note that the numbers in Table 2 (for a+s, b+f = 1,2,...,5) are

consistent with those published by Gittins and Jones (1979).
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Table 1 (α = .5)

bff

a+s

1

2

3

4

5

10

20

30

40

50

100

1

1.118

1.411

1.554

1.639

1.697

1.829

1.908

1.937

1.952

1.961

1.980

2 1

.751

1.071

1.257

1.379

1.466

1.683

1.824

1.878

1.906

1.924

1.961

3

.560

.859

1.051

1.187

1.288

1.558

1.747

1.822

1.863

1.888

1.942

4

.444

.715

.902

1.040

1.147

1.449

1.675

1.769

1.821

1.854

1.923

5

.367

.611

.789

.925

1.032

1.354

1.609

1.720

1.781

1.820

1.905

10

.194

.351

.482

.592

.688

1.017

1.344

1.507

1.605

1.670

1.819

20

.099

.188

.269

.342

.410

.677

1.008

1.207

1.338

1.433

1.668

30

.066

.128

.186

.240

.291

.507

.807

1.005

1.148

1.254

1.540

40

.049

.097

.142

.185

.266

.405

.672

.862

1.004

1.115

1.430

50

.039

.078

.115

.150

.184

.337

.575

.754

.892

1.003

1.335

100

.019

.039

.058

.077

.096

.183

.335

.463

.573

.668

1.001

Table 2 (α - .75)

b+f

a+s

1

2

3

4

5

10

20

30

40

50

100

1

2.484

2.986

3.224

3.367

3.463

3.689

3.827

3.880

3.908

3.925

3.961

2

1.702

2.303

2.642

2.863

3.019

3.410

3.666

3.766

3.819

3.853

3.923

3

1.272

1.856

2.221

2.476

2.663

3.164

3.516

3.657

3.734

3.783

3.886

4

1.007

1.548

1.909

2.174

2.378

2.948

3.375

3.554

3.652

3.715

3.849

5

.829

1.322

1.672

1.935

2.143

2.758

3.245

3.456

3.574

3.649

3.813

10

.428

.754

1.018

1.240

1.429

2.076

2.715

3.033

3.224

3.351

3.643

20

.212

.397

.563

.712

.848

1.383

2.039

2.431

2.691

2.877

3.342

30

.139

.267

.386

.497

.600

1.034

1.631

2.026

2.308

2.519

3.087

40

.103

.201

.293

.381

.463

.824

1.358

1.737

2.020

2.240

2.867

50

.082

.161

.236

.308

.377

.685

1.163

1.519

1.795

2.016

2.676

100

.040

.080

.119

.157

.194

.370

.676

.933

1.153

1.343

2.008
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Table 3 (α = .9)

b+f

a+s

1

2

3

4

5

10

20

30

40

50

100

1

7.028

8.000

8.542

8.722

8.905

9.342

9.620

9.729

9.789

9.826

9.907

2

5.001

6.346

7.071

7.539

7.869

8.694

9.243

9.461

9.580

9.655

9.816

3

3.796

5.163

6.010

6.578

6.996

8.103

8.883

9.201

9.375

9.486

9.726

4

3.021

4.341

5.184

5.809

6.276

7.572

8.542

8.950

9.177

9.322

9.637

5

2.488

3.720

4.561

5.179

5.676

7.100

8.223

8.710

8.984

9.161

9.549

10

1.268

2.116

2.783

3.332

3.799

5.372

6.904

7.664

8.120

8.426

9.128

20

.607

1.097

1.523

1.903

2.247

3.580

5.196

6.156

6.791

7.245

8.381

30

.390

.729

1.037

1.319

1.582

2.672

4.158

5.133

5.829

6.348

7.744

40

.285

.543

.782

1.005

1.217

2.127

3.461

4.401

5.101

5.646

7.195

50

.224

.431

.626

.810

.987

1.765

2.962

3.849

4.535

5.081

6.718

100

.107

.210

.310

.408

.503

.948

1.716

2.360

2.910

3.385

5.041
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